SCIENTIFIC PUBLICATIONS

shutterstock_743026318-1-1200x1061.jpg
27/Aug/2020

The results of a Phase I study published in Stem Cell Translational Medicine suggest that it is safe and feasible to infuse stem cells from banked umbilical cord blood into adults following an acute ischemic stroke. This research paves the way for additional studies into the efficacy of umbilical cord blood in treating stroke patients.

Stroke is the leading cause of death in the United States, with approximately 750,000 Americans suffering a stroke each year, of which 140,000 are fatal. Although a stroke can occur at any age, the risk increases dramatically for older Americans, more than doubling each decade after the age of 55. In fact, about 75 percent of strokes occur among individuals over the age of 65. The majority (85%) of strokes are ischemic, which occur when blood flow to a region of the brain is reduced beyond a critical threshold. In the event of an ischemic stroke, it’s critical to restore blood flow to the affected region as quickly as possible to minimize long-term damage.

Mesenchymal Stem Cells derived from umbilical cord blood (MSCs) have already been approved by the FDA to treat over 80 diseases, many of which are blood related. Due to their ready availability and advantages over bone marrow, cord blood derived stem cells have generated interest among researchers in exploring the potential for cord blood to treat other conditions, including ischemic stroke. Because umbilical cord stem cells are immunologically naive, they are less likely to trigger an immune response from an unrelated recipient and were found to be safe for further study.

 


FloridaMDArticle-1200x949.png
04/Oct/2018

Located in Altamonte Springs, Cord For Life® Inc. is a local umbilical cord blood bank that specializes in public and private stem cell processing and cryopreservation. Cord For Life® has operated in the Central Florida area since 1993, and to date has processed over 15,000 cord blood units from across the United States. In addition to collecting, processing and banking umbilical cord blood stem cells, the company provides consulting services to help organizations develop and operate high-quality cord blood banks, and offers educational training programs for healthcare professionals.

Recently, Cord For Life® launched its cord blood banking program.  Under this program private clients can store their baby’s cord blood stem cells (CBSC) for future needs or moms-to-be can donate their baby’s cord blood to the general public through the National Marrow Donor Program’s (NMDP) Be The Match® Registry. Public donation, which has no cost to the donor, makes CBSC available to anyone in the world in need of a stem cell transplant to treat over 75 diseases.

The Cord For Life® program utilizes a revolutionary new processing system, branded as PREMIERMAX®, which significantly reduces red cell contamination in the transplant product while recovering an equal or higher number of stem cells (when compared to other automated and traditional methods). PREMIERMAX® also reduces the level of DMSO required to adequately preserve the cells during the freezing process, thereby reducing potential recipient exposure to this sometimes toxic cryoprotectant.

PREMIERMAX® uses 2 unique reagents combined with individual unit Quality Control by highly trained technicians, to produce a superior final transplantation product. The processing reagent is PrepaCyte®-CB, which demonstrates an unrivaled ability to remove red blood cells over any other method on the market today. Red cell reduction reduces the amount of free hemoglobin in the thawed product infused to the recipient, thereby increasing the safety of the infused product. Additionally, PrepaCyte®-CB has shown in clinical trial and independent evaluation to increase the final stem cell population recovered, most significantly in the post-thaw colony forming assay which indicates functionality of the stem cells for engraftment.

The second key reagent in PREMIERMAX® is the freeze media, CryoStor® CS10. CryoStor is specifically designed to protect cells at ultra-low temp e r a t u r e s , unlike traditional cryopreservation reagents. This results in improved cellular transition through phase change from a liquid blood product to the frozen state for long-term storage, and again during thawing prior to infusion. During our validation of CryoStor® CS10, it was demonstrated that a less concentrated amount of the cryoprotectant reagent DMSO could be used in the freezing process while maintaining acceptable cellular functionality post-thaw.

The most important aspect of any change in status quo is the resulting effect of the change. Historically, the lower stem cell dose of a CBSC product when compared to a bone marrow or peripheral blood stem cell collection resulted in a longer time for bone marrow reconstitution (or engraftment). This led to early beliefs that CBSC could only be useful for pediatric patients or small adults. It was also realized that CBSC would typically result in longer periods of non-immunity, resulting in longer hospital stays for the recipient, even though GvHD is typically reduced.

Current data from over 20,000 CBSC transplants worldwide, shows an average time to PMN engraftment (PMN cell count >500 for 2+ days) is 25-27 days. In fact, our own historical data shows a comparable average PMN engraftment time of 21 days for units processed before our change to PremierMax-CBSM. Following our change in processing method, we are currently seeing an average time to PMN engraftment of only 11.33 days. Even more exciting is that independent data from another NMDP member cord blood bank that also uses PrepaCyte®-CB as it’s processing reagent mirrors our data from Cord For Life® (poster abstract to be published at AABB Annual Meeting 22-25 Oct., 2011).

As you can appreciate, a nearly 10 day reduction in the length of hospital stay, especially for a critically ill patient with no immune function, is highly significant. Having a readily available stem cell source product that can rival the engraftment time of marrow or peripheral blood sources, with a reduced risk of GvHD, and a significantly increased HLA-matching potential would create a major shift in the paradigm. Cord blood products have already begun to outpace marrow as a source for stem cell transplantation. With significant results such as these and new, exciting therapies being developed worldwide, the usefulness of cord blood stem cells will only increase over time. As more and more PREMIERMAX® processed CBSC units are transplanted worldwide, Cord For Life® will continue to monitor and analyze the engraftment data. A 2-site joint publication is expected in 2011 to further analyze the significance of the findings over a broader range of CBSC units, diseases, and transplant centers to eliminate other possible factors for the decreased engraftment time. We feel this finding could create a new excitement in the cord blood transplantation industry and provide a remarkable benefit to patients in need of life saving stem cell transplants.

By Donald Hudspeth, BS(CLS), MT(ASCP) and Sara Irrgang, MD, FCAP, FLORIDA MD, September 2011 Edition, pgs 33-34

 


shutterstock_365175962-1200x820.jpg
02/Dec/2016

December 2, 2016

BACKGROUND/CASE STUDY:

Cord for Life® has been accepting umbilical cord blood collections for private storage and public donation for over 15 years. Until recently, Cord for Life® was the only cord blood center that collected from national non-fixed sites (NFS) and fixed sites (FS) facilities. With others in the industry expanding to NFS collections, we compared our FS collections using Cord for Life® trained MDs, midwives, and collection staff to our national NFS collections to identify the strengths and weaknesses of the two programs.

STUDY DESIGN / METHOD:

The comparison was performed on all collection data from the years 2009 – 2010 where current acceptance criteria were constant. Using data entered in the StemSoft database system, the analysis examined total units received vs. registry placement and privately stored vs. publicly donated collections.

RESULTS / FINDINGS:

From the total donated units received 26% of FS collections were processed and placed on a registry. For NFS the total donations processed and placed on the registry was only 10%. Privately stored collections were 12% higher from the NFS while FS had 18% higher publicly donated units. The primary cause for unit rejection was low pre-TNC count (<12×108) often directly related to product volume. Excluding the pre-count the following were the next highest reasons for rejection:

CONCLUSION:

Fixed site collections allow for stronger management and control resulting in a more efficient and successful collection. There is a significant advantage in decreasing “preventable” errors and overall optimizing collections. There are many challenges to consider before implementing a non-fixed site collection program.

Although a greater number of units were received from the non-fixed locations, the overall product quality is lower. Another consideration is timing; kit shipment to the client prior to labor and unit receipt at the laboratory can impact the ability to meet the regulated timelines.

Using monthly tracking data as a CPI tool we discontinued acceptance of weekend collections as “normal” courier service is limited. This change resulted in fewer units received >48 hours from collection, saving collection materials and shipping costs. Other findings include lower efficiency and higher per banked unit cost in the NFS model.

Success of a non-fixed collection program will rely on improved distance training, increasing efficiency to improve value and there must be an outlet for non-transplantable units. Visit us at www.cordforlilfe.com or call 800-869-8608 for more information.


observer-1-1200x805.png
18/Jan/2012

January 18, 2012

When you hear the term “stem cells”, what comes to mind? Religious controversy? Ethical debate? embryonic stem cell research? These associations are common, and unfortunately could be limiting how often stem cells are donated for use as a life-saving transplant.

Many people equate stem cells with embryonic stem cell research but non-embryonic (or adult) stem cells are different and they’re used every day in modern medicine to save lives. Furthermore, to date, embryonic stem cells have not been used for many human therapeutic purposes.

Nearly everyone knows someone that has had or needed a bone marrow transplant, but did you know that the transplant is actually of a type of stem cell? There are several types of adult stem cells that are far removed from their controversial embryonic cellular parents. Adult stem cells can be found in the bone marrow, peripheral blood, umbilical cord blood, fat tissue, teeth and many other sources.

Over 100,000 stem cell transplants have been performed in the U.S. Bone marrow was first used in the late 1960’s for transplants to combat leukemia, lymphoma and other blood diseases. In the late 1980s, the first transplant using umbilical cord blood stem cells was performed. The success of this first cord blood transplant has led to several thousand more patients being treated with stem cells. Additionally, adult stem cells are being used in the field of regenerative medicine to further develop uses for these special cells in fighting other diseases.

The beauty of umbilical cord blood stem cells is that these cells are collected from what was once considered medical waste. After the normal delivery of a baby, the umbilical cord is clamped and cut, and about 150mL of cord blood remains in the cord. This cord blood is rich in stem cells that can be used as an alternative to bone marrow stem cells for transplantation. These stem cells from the cord blood can be used for treating more than 75 diseases.

In addition to the easy and non-invasive collection process for cord blood, these cells offer a few advantages over bone marrow stem cells when used for transplantation. Stem cells from cord blood are biologically much less mature than those from bone marrow of an adult donor. If we think of the immune cells as “warriors,” the “warriors” found in the adult marrow donor sample are fully capable of fighting and therefore a common problem in a bone marrow sourced stem cell transplant is graft vs. host disease (or GVHD). GVHD occurs when the donor cells attack the recipient cells and tissue as foreign. This can cause a very severe problem for transplant recipients and is a form of reverse rejection.

With cord blood sourced stem cell transplants, GVHD is typically far less prevalent and far less severe. This is because the “warriors” are less mature. The cells are not as capable of fighting. This is the same reason that newborn babies often constantly battle sniffles and colds; their immune system cells are not yet fully functional.

In the transplant setting, having these functionally immature immune cells allows the matching between donor and recipient to be less important. In a bone marrow source transplant, the donor must perfectly match the recipient, whereas in a cord blood sourced transplant, a less-perfect match can be used with similar success. This leads to more patients being able to find a suitable stem cell source for their needed transplant. According to recent data from the National Marrow Donor Program (NMDP), non-Caucasian recipients in need of transplant are more likely to find suitable matches of cord blood stem cells than from adult marrow donors.

You can donate your cord blood for free or privately store it for a fee through the Altamonte Springs-based Cord for Life®. Because of cord blood, many more people, especially non-Caucasians, can receive the life-saving treatment they desperately need.

Winter Park/Maitland Observer


logo-cord

Our purpose is to provide the expectant mothers with information necessary to discover the lifesaving potential of umbilical cord blood.

Copyright Cord for Life 2019. All rights reserved.

Skip to content